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A gauge theory in fiat space-time, in which the gauge algebra is the (infinite-dimensional) 
algebra of vector fields on a surface, determines a curved space-time metric. This note 
deals with some completely integrable examples, concentrating on the N ~ oo limit of the 
Euler-Arnol 'd equations [geodesics on SO(N)] .  In this case, the metric turns out to be 
fiat, which points the way to a coordinate transformation that solves the original equations. 
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1. Introduction 

At about the time I arrived in Oxford as a graduate student, Roger Penrose 
made a particularly important breakthrough: a twistor correspondence for self- 
dual vacuum space-times which he called the Nonlinear Graviton (Penrose 
1976). This opened up a whole new subject, the application of twistor theory 
to nonlinear systems; and stimulated interest in matters twistorial amongst an 
even wider audience. This note is a small contribution to the subject. 

The idea is as follows. There are several completely integrable differential 
equations (both ordinary and partial) which involve arbitrary Lie algebras. 
Indeed, many (perhaps all) of these may be obtained by reduction from the 
self-dual Yang-Mills equation in four dimensions; and the latter, being a gauge 
theory, involves an arbitrary Lie algebra (which is inherited by the reduced 
system). If one now takes the Lie algebra to be an (infinite-dimensional) alge- 
bra of vector fields on some manifold M, then the system determines a curved 
metric. Under the right circumstances, this geometry is four dimensional and 
self-dual, i.e., we have a nonlinear graviton. Some systems lead to the generic 
nonlinear graviton (for example, the Nahm equations, with M being three 
dimensional). For others, however, one gets a restricted class of nonlinear 
graviton; and this may point the way to a coordinate transformation which 
solves (or drastically simplifies) the original equation. 
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The main example studied in this note is that of geodesics on SO(N)  
equipped with the so-called Manakov metric. This generalizes the "classical" 
integrable system of Euler's equations for a top with one point fixed (which 
corresponds to N = 3). The limit N -~ oo corresponds (in some sense) 
to replacing SO(N)  by a certain Lie algebra of  vector fields on the two- 
dimensional torus T 2. This "limit" system [geodesics on SO(c~)] determines 
a self-dual metric, which, however, turns out to be flat; related to this is the 
fact that the equations can be completely solved (at least implicitly) by means 
of a coordinate transformation. 

Two other examples are mentioned in brief: the SU(o¢) Nahm equations 
and the SU(oo) Toda field equations. Each of  these leads to a nonlinear 
graviton which admits a Killing vector field; but the nature of  the Killing 
vector is different in the two cases. The Nahm equations can be linearized by 
means of  a coordinate transformation, whereas the Toda equation is strictly 
nonlinear. 

The main motivation of  all this is towards understanding the relationship 
between various integrable systems, each of  which can be understood in 
twistorial terms. It presumably contributes little towards the breakthrough in 
theoretical physics that Roger has always regarded as being the main aim of 
twistor theory. But such mathematical curiosities and amusements may still 
count as steps in the right direction. 

2. Geodesics on SO(N)  

First, let me recall the (well-known) description of  geodesics on a Lie group 
equipped with a left-invariant metric. Take G to be an n-dimensional Lie 
group, with ~ denoting its Lie algebra. An element A s of G carries an abstract 
n-dimensional index a; the Lie product of A s and B ~ is 

[ A , B ]  ~' = CBy~A#B y (1) 

(i.e., the CB/' are the structure constants of  G). A left-invariant metric on 
the group G corresponds to a metric h~,# on the Lie algebra G. The condition 
for this left-invariant group metric to be right invariant as well, is that h~# 
be invariant under the adjoint action of  G on G; this in turn is equivalent to 
requiring that 

Cpy~, : =  C#y~/~ (2) 
be totally antisymmetric in af ly .  

I f / "  : t ~ F ( t )  E G is a parametrized curve in G, then 

A s :=  (F- l ]~)  a (3) 
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is a curve in G (here an overdot denotes d/dt) .  Geodesics on G correspond 
to extremals of the Lagrangian 

h~# A~ A~ ; (4) 

and this leads to the equations of motion 

,/1 ~ = -C~#yAB A y (5) 

(the indices of  C are lowered and raised with h~p and its inverse). Notice 
that, if the metric on ~ is bi-invariant, so that (2) is skew in ya, then the 
right-hand side of  (5) vanishes, and the geodesic equations become a set of  
first-order ODEs for F ( t ) .  But we are interested here in the more general 
situation in which the right-hand side of (5) is nonzero. 

Suppose now that ~ is semisimple, so that it admits an ad-invariant metric 
k~p. We can then rewrite (5) in a different form, using the fact that C~r~/~ 
is totally skew. Namely, (5) is equivalent to 

= [B,A],  (6) 

where 
B ~ := k~#h#yA r. 

If we think of  the inverse of  (7) as defining a linear map L :  ~ ~ G, i.e., 

(7) 

L ( B )  ~ := h~Bk~yB y, 

then the setup can be restated as follows. 
Let ( , ) denote an ad-invariant metric on G, and let L : ~  be an 

invertible linear map. Then 

h ( B , B )  := ( L - I ( B ) , B )  (8) 

defines another metric on ~, and the geodesics of the corresponding left- 
invariant metric on G are given by solutions t ~ B ( t )  E G of 

= [ B , L ( B ) ] .  (9) 

If G is SO (3), then these are Euler's equations for the free motion of a rigid 
body with one point fixed; they provide a classic example of a completely 
integrable system. For general G, (9) are called the Euler-Arnol'd equations, 
and they may or may not be integrable (depending on the choice of L). 
Manakov (1976) demonstrated integrability for G = SO (N),  and L having a 
particular form (described further below). And if we restrict to linear maps 
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L which are diagonal (with respect to an appropriate basis for ~), then these 
"Manakov metrics" are the only ones for which (9) is completely integrable 
(Adler and van Moerbeke 1982, Haine 1984). 

The Manakov family of linear maps L may be derived as follows. Let B 
and A be real antisymmetric N x N matrices, i.e., belonging to the Lie algebra 
of SO(N).  Let P and Q be constant real diagonal matrices 

P := diag(pl . . . . .  pN), Q := diag(ql . . . . .  qN). 

Impose the equation 

d (B + (Q) = [B + ~Q,A + (P], (10) 

for all values of the complex parameter (. The coefficient of ~ in (10) gives 

[A,Q] = [B,P], (11) 

which determines A in terms of B; in fact, A = L(B) ,  where the entry in the 
ith row and j th  column of L(B)  is 

L(B) i j  :=  Pi -PJBi j  (ivA j )  (12) 
qi - qy 

(no sum over i or j ) .  This, or rather the corresponding left-invariant metric 
on SO(N),  is the Manakov metric. The remaining content of (10) is just 
the geodesic equation (9). If N = 3, then imposing (12) is effectively no 
restriction on L; but for N _> 4 it is. 

Equation ( I 0) is in Lax form, and is equivalent to saying that the two linear 
operators 

B + ~Q, d/dt  + A + ~P (13) 

commute. One consequence of this is that the spectrum of the matrix B + (Q 
is conserved, for all ~. This provides enough constants of  motion to ensure 
that the system is completely integrable in terms of Riemann 0-functions 
(Manakov 1976). The time evolution of the system amounts to linear flow 
on an abelian variety, the jacobian of a Riemann surface (which in turn is a 
branched cover of the l-sphere). 

How does twistor theory enter into all this? One way is from the fact 
that (10) is a special case (reduction) of the self-dual Yang-Mills (sdYM) 
equations, solutions of which correspond to holomorphic vector bundles over 
(part of) twistor space CP 3 (see, for example, Ward 1987). One can link 
the twistor geometry to the algebraic geometry referred to in the previous 
paragraph. But this is not the subject of  the present note. 
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3. Geodesics on SO(oo) 

Does there exist, in some sense, an N --, ~ limit of this integrable system? 
This involves selecting some version of SO(c~), or of the Lie algebra so(oo). 
There are several such versions (non-isomorphic to one another). The one 
used here identifies s o ( ~ )  as an algebra ~- of volume-preserving vector fields 
on the two-dimensional torus T 2 (Fairlie et al. 1990). Actually, the algebra 
of  all such vector fields is identified as su(oo), and so(c~) is then obtained 
as a subalgebra. This version of so ( ~ )  is slightly bogus: it is based on taking 
the N ~ ~ limit of  the structure constants of so(N) in an appropriate basis, 
and observing that one then obtains the structure constants of the vector field 
algebra 9 c. This so (m)  does not appear to contain so(N)  in a natural way. 

Let x and p, each periodic with period 2n, serve as coordinates on T 2. To 
a function f ( x , p )  on T 2 corresponds the volume-preserving (Hamiltonian) 
vector field 

Of 0 Of 0 
Ox Op Op Ox" 

So we identify vector fields as functions (modulo constants). The Lie algebra 
operation on these functions is just the Poisson bracket. The algebra of  all 
functions is su(co), and we take U = so(oo) to be the subalgebra of functions 
f ( x , p )  that are odd in p. 

So the matrices A, B that appeared previously become vector fields A, 
B corresponding to functions A(t,x,p),  B(t ,x,p) (both odd in p).  The 
analogues of  the diagonal matrices P, Q are functions P(x), Q(x) o f x  only. 
Equation (11 ), with the brackets now being Poisson brackets, implies that 
A = L(B), where L is simply multiplication by the function 

~(x)  :=  P'(x)/Q'(x) 

(the prime denotes d /dx) .  And the equation of motion (9) then gives 

Bt = -~'BBp (14) 

(subscripts denoting partial derivatives). 
An ad-invariant metric on Or is 

(f ,g) := f f gaxdp; 

and so the metric h corresponding to L in this case is 

h( f , g )  = f U~fgdxdp. (15) 
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Roughly speaking (and ignoring technical difficulties), the group SO(c~) 
obtained by exponentiating ~" is the group of volume-preserving diffeomor- 
phisms of T 2 which also preserve the involution p H -p .  The metric (15) 
determines a left-invariant metric on this SO(c~); and the geodesics with 
respect to this metric correspond to solutions of  (14). 

As is well known, one can write down the general solution of (14), in 
implicit form. Namely, if B ( O , x , p )  is the initial data (at time t = 0), put 

H ( x , p )  :=  ~ ' ( x ) B ( O , x , p ) ;  

then B ( t , x , p )  is determined implicitly by 

~ ' B ( t , x , p )  = H ( x , p  - ~ ' t B ( t , x , p )  ). (16) 

In other words, the geodesic equations on SO (c¢), with left-invariant metric 
given by (15) for some ~(x),  can be completely solved (in this implicit 
sense). One way of  understanding this is as follows. The two commuting 
linear operators 

B + (Q, O/Ot + A + ~P (17) 

are now vector fields; they determine a self-dual vacuum space-time which in 
this instance isflat (details below); this means that a coordinate transformation 
trivializes the system; the solution (16) in effect expresses this coordinate 
transformation. 

Actually, the vector fields (17) live on a three-dimensional space R x T z, so 
as it stands we would get a reduction of the usual nonlinear graviton. Let us 
avoid this by introducing an extra variable u (which plays no essential role), 
and replacing (17) by 

0 0 B+~Q, ~+~+A+~P, (18) 

which now are vector fields o n  R 2 x T 2. 
A convenient form of the nonlinear graviton theorem is as follows (Ashtekar 

et al. 1988; Mason and Newman 1989; Ward 1990c). Let Vl + (V2 and E3 + (V4 
be two commuting vector fields (each linear in ()  on a four-manifold M, and 
suppose that each of  the ~ preserves a four-form co on M. Define a function 
A on M by 

zl := ~o( v~, v2, v3, v4). 

Then the contravariant metric 

A-~(V~ ® V4 + ~ ® V ~ - V 2 ® V 3 - ~ ® ½ )  (19) 
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is a self-dual vacuum metric. (And in fact, all self-dual vacuum metrics arise 
in this way.) 

In our case, M = R 2 x T 2 and to = dt A du A dx ^ dp. The Va may be 
read off from (18). The function A is easily computed as A = -Q'Bp. The 
corresponding metric (19) is flat: if we transform from the coordinates (x,p) 
to (Q,B),  then (19) equals 

ot ® oB + oB ® ot + oQ ® o,, + G ® OQ. 

We see therefore that the SO(N) geodesic equations (which are completely 
integrable in the usual sense) become virtually trivial in the limit N ~ ~ ,  at 
least if that limit is understood as described above. The trivialization involves a 
coordinate transformation which interchanges the dependent and independent 
variables. 

4. The SU(oo) Nahm and Toda equations 

The same sort of N ~ oo behaviour occurs in other examples. The two 
mentioned in this section have already been described elsewhere, and are 
recalled here for purposes of comparison. 

The Nahm equation for Lie algebra G involves three g-valued functions of 
t, denoted A j ( j  = 1,2, 3); the equation they satisfy is 

Aj  .-~ l ~ j k l [ A  k ,AI] .  

If ~ is the Poisson bracket algebra s u ( ~ )  defined earlier, then the A j become 
functions of (t, x, p ), satisfying 

.4J .~ ~:jkl Ak AI --x'w" (20) 

This set of equations is the condition that the following two vector fields 

should commute: 

(d I + i A  2) +((O/Ot+iA3) ,  ( O / O t - i d  3) + ~(A 1 -  iA2). (21) 

As before, we can introduce an additional variable u, say by making the 

replacement 
A 3 ~ A 3 + O/Ou. 

Then (21) become vector fields on a four-dimensional space, and they deter- 
mine a self-dual vacuum metric. This time, the metric is not flat. However, 
it clearly possesses a Killing vector, namely O/Ou. This Killing vector turns 
out to be self-dual; and self-dual vacuum spaces with self-dual Killing vectors 
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correspond to solutions of the three-dimensional Laplace equation (cf. Tod 
and Ward 1979). This means that the (nonlinear) su(oo) Nahm equation 
(20) should somehow be equivalent to the (linear) Laplace equation. One can 
see this equivalence quite directly (Ward 1990a): a coordinate transformation 
which interchanges the dependent and independent variables (A ~, A 2, A 3) and 
(t ,x,p) converts the one equation into the other. 

Let us turn now to the Toda model. The two-dimensional Toda field equa- 
tions, for affine Lie algebras as well as for finite-dimensional ones, can be 
obtained as a reduction of the self-dual Yang-Mills equations, and hence can 
be understood in terms of twistors (Ward 1987). To begin with, take the Lie 
algebra G to be simple, of rank r. The Toda field consists of r real-valued 
functions on R2; these are denoted (ba(Z, 2) (a = 1,2 . . . .  , r) .  The Toda 
equation is 

02 
OzOzCka + ~--~ K~b exp~bb = 0, (22) 

b 

where Kab is the Cartan matrix of G. This is a completely integrable system; 
rather than describe the two commuting linear operators which give rise to it, 
let us move directly to the case G = s u ( ~ ) .  

For this, we take two vector fields on R 2 x T 2 of the form 

0 0 
O----S + f  -~e+' ~ z  + e - +  ~g' (23) 

where 
f = f ( z , ~ , x ) ,  g = g(z ,~ ,x ) ,  

e ± = e±(z ,~ ,x ,p)  = e(z, Lx)exp(+ip) .  

Note that the dependence of these functions on p is rather special: it means 
that f and g take values in a Caftan subalgebra of G (consisting of functions 
of x only), and e + corresponds to a set of simple roots of G. The condition 
for the two vector fields (23) to commute is 

0 2 0 2 
OzO~dp + ~-~  exp~b = 0, (24) 

where ~ = 21oge. This is the su(oo) Toda field equation. The vector fields 
(23) determine a self-dual metric on R 2 x T 2, which again is not flat, and 
possesses a Killing vector O/Op. In this case, however, the Killing vector is not 
self-dual. The quotient of R 2 x T 2 by O/Op is a three-dimensional Einstein- 
Weyl space, and so solutions of (24) determine a class of Einstein-Weyl 
metrics (Ward 1990b). 

Equation (24), which is completely solvable in principle, cannot be solved 
or linearized by means of a coordinate transformation (since the quotient 
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Einstein-Weyl space is not fiat, in general). If, however, q~(z, 2 ,x )  depends 
on z and ~ only through the combination t = z + ~ (so that 0.- -0.~ is another 
Killing vector, which this time is self-dual), then (24) reduces to the Toda 
equation 

0 q2 0 2 
~-~q~ + ~--~ exp~b = 0; (25) 

and (25) can be solved, as before, by a coordinate transformation (Ward 
1990b). 

5. Remark 

The items described here are part of a general framework relating gauge 
theory (in flat space-time) to curved space-time. Whether such ideas will 
prove to be really useful is not yet clear. One intriguing suggestion (by 
Lionel Mason) is that the KP equation (a well-known completely integrable 
system in 2+1 dimensions) might be obtainable by reduction from the self- 
dual Einstein equations. To investigate this, and other applications of the 
framework, requires a better understanding of the N --, oo limit. 
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